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ABSTRACT 
 
Mathematical representations of humans that are capable of predicting thermophysiological 

responses provide valuable tools for mitigating health risks during exposures to extreme 

environments.  Humans work or operate in a wide range of conditions, from extreme heat, freezing 

cold, to partially or fully immersed in water.  Each of these conditions presents unique heat exchange 

relationships that make mathematically modeling responses to each slightly different.  Methods: A 

validated mathematical model was used to describe human thermal responses to whole-body water 

immersion specific to the differences between head-in and head-out conditions.  Four different 

immersion conditions in 17°C water were used (low activity with head out and head in, and moderate 

activity with head-out and head-in) to describe these responses. Results: Modeling showed a 

moderate increase in shivering rate and water-based convective heat loss that was coupled with 

significant differences in brain temperature and an observable difference in internal core body 

temperature during head-in conditions. This work highlights the significance in differences between 

head-in and head-out during whole-body water immersion.  

 

Dedication: 

This work is specifically dedicated to the memory of Dr. Leslie D. Montgomery (1939-2022).  His 

published work on thermoregulatory responses to humans during immersion were of significant 

importance to advancing this field of science.  However, perhaps more notable was his mentorship 

and dedication to the well-being of others that has helped advance scientists and people generally.  
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INTRODUCTION 

 

Mathematical models capable of 

predicting human thermophysiological 

responses can provide valuable tools for 

prevention of health risks during exposures to 

extreme environments. Across the world, 

humans find themselves working or operating 

in a wide range of conditions, from ambient air 

or water exposures, or from extreme heat or 

cold exposure.  For each of these conditions, 

there are unique heat exchange relationships 

that make modeling responses to them slightly 

different. 

 

Mathematically describing the 

interaction and heat response within these 

conditions can be simplified by the heat 

balance equation (Eq. 1).  In this equation, we 

can see a predicted heat rise or fall based on 

the balance of heat storage (S), calculated by 

the sum of heat produced, heat gained, and 

the heat dissipated through the four main 

pathways of heat exchange: 

 

𝑆 =  𝑀 ± 𝑊 ± 𝑅 ± 𝐶 ± 𝐾 − 𝐸 [
W

m2] (𝐸𝑞. 1)   

 

where M and W represent metabolic heat and 

from active work rate; R is radiation exchange 

by electromagnetic waves (e.g., solar or 

infrared); C is convective transfer from fluid or 

vapor contact (e.g., air or water); K is 

conductive transfer from direct contact with 

solid objects (e.g., a hot or cold surface); and 

E is evaporative heat loss of water from liquid 

to vapor (e.g., sweat, respiratory water loss). 

 

Several methods and models exist for 

both hot (1-6) and cold conditions on land (7-

10), as well as models specifically tailored to 

cold or warm water immersion (11-15). During 

exposure to heat, humans’ thermoregulatory 

system seeks to maintain homeostasis within 

the environment by focusing on heat 

dissipation that is mainly achieved by 

thermolytic function of sweat evaporation; 

while heat exchange (typically gain) results 

from each of the remaining pathways (R, C, K) 

and from metabolic heat production (M+W).  

During heat stress, the human’s 

thermoregulatory system tends to vasodilate 

(widening of blood vessels) to allow for 

maximal blood flow and heat exchange to the 

skin of the extremities (17-18). In heat stress 

conditions, the main concern is typically due to 

heat gain injuries (e.g., hyperthermia, heat 

stroke, heat exhaustion) (19-21). 

 

In contrast to heat, the 

thermoregulatory response to cold typically 

focuses on vasoconstriction (narrowing of 

blood vessels), to restrict blood flow to the 

extremities (hands, feet, etc.) to maintain body 

core temperature to protect major internal 

organs.  By this thermoregulatory response, 

often cold related heat loss injuries of concern 

are on the extremities (e.g., frostbite to hands, 

feet, face) (9, 10). 

 

Water immersion poses an even more 

potentially extreme and unique challenge, as 

the conditions limit avenues of heat exchange 

to almost entirely conduction (22). While 

several well-known methods exist for 

specifically modeling immersion (23-27), one 

of the most crucial improvements was made by 

Montgomery, who adapted rational 

coefficients, individual node layers, and a 

succinct computational framework for scaling 

human size specific to divers (28-31).  

 

Historically, much of the focus has 

been on land responses or in cold water 

immersion. However, climate change poses 

increasing extremes (32-34), highlighting a 

less observed exposure that is becoming more 

relevant is that of warmer water exposure than 

the thermoneutral point at rest of 35°C water 

temperature (35-39). While the thermoneutral 

zone for different work rates during head-in or 

head-out aquatic activities remains yet 

unspecified (22).   
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This manuscript describes human 

thermophysiological responses to whole-body 

water immersion specific to the differences 

between head-in and head-out conditions using 

a validated mathematical model.   

  

METHOD 

 

Study Design 

This approach used the Health Risk 

Prediction Model (HRP) to characterize 

potential human thermophysiological 

responses to whole-body water immersion for 

both head-in and head-out conditions.  The 

HRP is a mathematical model that has been 

validated for various conditions to include 

both cold and warm water immersion (15-16, 

40-42). 

 

The Health Risk Prediction Model 

The Health Risk Prediction (HRP) 

model is a rationally derived computational 

model method that makes thermal and 

physiological predictions (organ, brain, and 

skin temperatures, sweat rates, blood flow, 

etc.) based on input scenarios.   The HRP 

method typically divides the human into 14 

geometric segments (13 cylinders and one 

sphere) and 39 compartments (38 layers and a 

blood compartment) (Figure 1); however, 

algorithms within the method allow for 

expansion or simplification of these structures 

(16).  

 

The HRP model uses a collection of 

heat balance equations to dynamically account 

for changes within and between each of the 

cylinders and layers.  Additionally, the HRP 

includes both a set of passive operating 

methods to account for heat exchange between 

layers as well as a set of active calculations to 

account for physiological responses such as 

shivering, sweating, and blood flow. 

 

 

 

Figure 1. Health Risk Prediction (HRP) 

model human divided into 14 segments (13 

cylinders and one sphere) and a blood 

compartment) 

 
 

Analyses 

To demonstrate the predicted human 

responses graphically, the HRP method was 

used to mathematically model conditions 

similar to those experimented by Pretorius et 

al., (43, 44). Specific inputs to the model 

included a normally hydrated and relatively 

healthy male of typical size (~1.72 m2), in two 

immersion statuses (one with head-out of the 

water and one with head-in and fully 

immersed).  Two work rates were used for both 

conditions (120 and 275 kcal/h), water 

temperature was set to 17°C, and external 

conditions were set to an air temperature of 

22°C, relative humidity of 50%, and air 

velocity of 0.1 m/s (Table 1). 

 

Table 1. Experimental conditions 
 Low 

activity 
Moderate 

activity 
Metabolic rate 120 kcal/h 275 kcal/h 

Water temperature 17°C 17°C 

Air temperature 22°C 22°C 

Relative humidity 50% 50% 

Air velocity 0.1 m/s 0.1 m/s 

Clothing Nude Nude 
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RESULTS 

 

Predicted modeling outputs for each of 

the four conditions included graphical 

comparisons of brain, internal organ core, and 

skin temperatures (TB, TC, TSK; °C), shivering 

metabolic rate (kcal/h), and water convection 

(kcal/h). For both the low (120 kcal/h) and 

moderate (275 kcal/h) conditions, comparisons 

were made between the two immersion states 

of head-in and head-out.   

 

Figures 2 and 3 show TB and TC for 

both metabolic work rates, low (a panels) and 

moderate (b panels).  From these two sets of 

figures, a drastic lowering of TB is observed for 

the head-in versus head-out (Figure 2); while 

there is a slightly higher internal TC for head-

in compared to head-out conditions (Figure 3).  

Additionally, while the temperatures 

themselves adjust to the conditions, these 

patterns of higher and lower remain relatively 

consistent between the two work rates. 

 

Figure 2. Brain temperatures (TB; °C) for both low (a) and moderate (b) work rates for head-out 

(red lines) and head-in (blue lines). 

 
 

 

Figure 3. Internal organ body core temperatures (TC; °C) for both low (a) and moderate (b) work 

rates for head-out (red lines) and head-in (blue lines). 

 

   
  

a b 

a b 
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The predictions from Figure 3 show a 

similar TC pattern to that of the work by 

Pretorius et al., (43, 44).  Given the modeling 

approach balances the whole humans’ heat 

exchange, this similar response of TC allows us 

to reasonably assume the TB responses shown 

in the Figure 2 were valid.  

 

Figure 4 shows TSK for both metabolic 

work rates and immersion statuses.  From this 

figure, there is an expected observation of 

differences between the immersion statuses, 

but a similarity between the two work rates. 

 

Figure 4. Skin temperatures (TSK; °C) for 

both head-out low activity (solid red line), 

head-in low activity (solid blue line) and 

head-out moderate activity (dashed red line) 

and head-in moderate activity (dashed blue 

line). 

 
 

Figure 5 shows convective heat loss 

across each of the four conditions at both the 

end of the scenario (a) and for the average of 

the entire event (b).  From this, there is clearly 

a higher collective heat loss observed during 

the head-in immersion at both the end of the 

event (panel a) and for the average across all 

time points (panel b). 

 

Figure 6 shows shivering metabolic 

rate for both the low and moderate activity 

conditions. Figure 6 shows that shivering 

metabolic heat produced during head-in 

conditions were much higher than compared to 

those of head-out.  From this figure, an 

observed higher rate of shivering is predicted 

in both the low and moderate work rates during 

head-in immersion.  This point coupled with 

data shown in Figures 2 and 3 is important, as 

it shows both an increased metabolic demand 

due to shivering (Figure 6) as well as an 

associated lowering of both TB and TC (Figures 

2 and 3, respectively). 

 

Figure 5. Water based convective heat loss 

(kcal/h) for head-out (red boxes) and head-in 

(blue boxes) for the end of the scenario (a) 

and for the average across the entire event. 

 

 
 

Similar to the comparable TSK values 

across conditions, modeling showed several 

elements to be closely related to each other.  

Figure 7 demonstrates the relatively direct 

relationship between TC and body blood 

temperature (TBL). 

a 

b 
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Figure 6. Shivering (kcal/h) for both low (a) and moderate (b) work rates for head-out (red lines) 

and head-in (blue lines). 

 
 

Figure 7. Overlay of blood temperature (TBL) (solid lines) and body core temperature (TC) (dashed 

lines) for both low (a) and moderate (b) work rates for head-out (red lines) and head-in (blue lines). 

  
 

 

DISCUSSION 

 

This work demonstrates the important 

significance between differences in head-out 

versus head-in during whole-body immersion. 

Additionally, this manuscript demonstrates 

how sophisticated mathematical models can be 

used to describe complex physiological 

interactions with extreme environmental 

conditions.  The present analyses predicted 

responses that were in agreement with those 

observed in the collective laboratory data.  The 

HRP acceptable predictions strengthen the 

hypothesis for an extension of confidence in 

the validity of other more difficult to obtain 

measures such as brain temperature (TB). 

Nonetheless, brain temperature is measured to 

manage neurological emergencies (e.g., 

recovery from brain damage) in hospital 

settings. Advances in new technologies of 

implantable and biodegradable brain 

temperature sensors may allow for further 

examination of the accuracy of biophysical 

models in field conditions (45).  

a b 

a b 
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Predictive data from HRP model as 

depicted in Figures 2 and 3 are consistent with 

previous studies, using heat flux method to 

estimate head heat loss, evidencing that TB is 

much more sensitive to water immersion 

duration and water temperature than that of TC 

during exercise in cold water (43-44, 46). A 

moderate workload may attenuate the declined 

trend of intracranial temperature inducing its 

stabilization for the first hour in contrast to a 

light intensity activity. A possible explanation 

for the increased rate of brain cooling in head-

in compared to head-out condition is the 

augmented exposed surface area, e.g., whole-

head immersed (conductive heat loss), blood 

cooling redistribution between brain and core 

body (convective heat loss), and the 

insufficient amount of total heat energy 

production (shivering, and mechanical 

workload) (46). While this seems somewhat 

intuitive once stated; it is a difficult point to 

demonstrate without models such as this.  

Similarly, Figure 4 demonstrates how closely 

related skin temperature becomes to that of the 

water temperature due to the overwhelming 

conductive relationship.   

 

Similar to many comprehensive 

modeling methods, it is possible that 

improvements can be found that optimize 

predictive accuracy in different conditions 

(especially for elements more difficult to 

measure).  For example, estimates of 

metabolic costs, shivering responses, or sweat 

rates can each have significant impacts to the 

modeling outputs, and each have many 

different approaches (9-10, 47-51).  Another 

element for consideration is the effects of 

different clothing types on heat exchange, or 

more pointedly for this manuscript, thermal 

insulation during immersion status. 

 

Future work in this area can be focused 

on expansion to more comprehensive 

modeling methods (e.g., finite element 

models) (52-54), assessing improvements 

related to individual differences (e.g., age, sex, 

body composition, morphology) (55-65). 

While special attention can then be made to 

account for unique interventions and how they 

relate to a person’s health and performance 

(e.g., medications, prior nutrition, or 

supplement uses) (66-74), fitness levels (75-

78), or existing comorbidities (69, 79-82) to 

expand use to the broader population.  

 

An additional element worth noting is 

the complexity of the interacting effects of 

each of the variables within a real-world 

scenario.  That is to say, there is a complicated 

balance between each element of heat 

production and heat loss.  For example, 

generally metabolic heat production is the 

main factor to consider, as it can outweigh or 

offset the impact of heat loss (e.g., a person can 

move more and remain warm in a cold 

environment). However, in immersed 

conditions, the restriction of other avenues of 

heat exchange and a near sole reliance on 

convection makes correctly calculating this 

rate even more critical to accurate predictions.  

This point can be made quantitatively by 

looking at the similarities between elements 

such as predictions of skin temperature (TSK) 

across work rates (i.e., Figure 4) or the pattern 

similarities between blood temperature (TBL) 

and body core temperature (TC) (i.e., Figure 7).   
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