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ABSTRACT 

The accuracy of the Heat Strain Decision Aid (HSDA) was assessed for predicting core body 

temperature (Tc) associated with US Army Ranger Training Brigade (RTB) self-paced road 

marches during Spring, Summer, and Winter classes.  Physiological data was collected from 

65 Ranger students (Spring: n = 15, Summer: n = 20, Winter: n = 30) along with an assessment 

of clothing and equipment worn, and continuous measurements were taken of the 

environment.  This observed data was used as inputs into HSDA and comparisons were made 

between observations and predictions.  Five statistical assessments methods were used to 

assess the validity of HSDA to predict Tc; Bias, mean absolute error (MAE), root mean square 

deviation (RMSD), limits of agreement (LoA) and a non-parametric comparison similar to a 

Bland-Altman analysis. Calculated Bias, MAE, and RMSD between predicted and actual Tc 

showed a calculated Bias of -0.02, MAE of 0.40, and RMSD of 0.45 °C for the three classes 

combined.  These analyses showed HSDA predictions were able to meet many of the accuracy 

criterions used to determine acceptability.  Additionally, this work highlights areas for 

potential improvement of the HSDA modeling method.  

 

https://doi.org/10.12922/jshp.v9i3.184
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INTRODUCTION 

Modern dismounted Soldiers are often 

at increased risk of thermal injuries, as they 

regularly work at high intensities for 

prolonged periods of time; while operating in 

a complex range of environments (1).  These 

risks are further complicated by the 

requirements for carrying heavy loads and 

wearing cumbersome clothing and individual 

equipment (2-4).  It is critical to their missions 

and individual safety to effectively manage 

these physiological and environmental threats.  

The US military has worked extensively on 

providing guidance as well as computer-based 

decision aids to help provide tools for mission 

planning and risk mitigation strategies (5-11)  

Goldman (12) eloquently simplified 

the thermal problem for humans based on the 

interaction of three main elements: 1) 

environment, 2) clothing, and 3) metabolic 

heat production (activity rate).  Understanding 

and predicting responses to these challenges 

are particularly complex for warfighters, as 

they work in a variety of environmental 

conditions (e.g., hot, cold, high altitude, 

subterranean) (11), they are required to wear 

occlusive and/or heavy personal protective 

equipment (13-17), and they work at high or 

varied demands for extended periods of time.  

Soldiers in contrast to athletes, work at 

unpredictable and varying levels of metabolic 

demand, operate in a wide range of climatic 

conditions, and these activities and exposures 

can last for protracted and unpredictable 

periods of time. 

The U.S. Army’s Heat Strain Decision 

Aid (HSDA) is a widely-used 

thermoregulatory model that makes 

predictions of core body temperature (Tc) and 

sweat rate based on inputs related to an 

individual (or group), clothing biophysical 

properties, environmental conditions, and 

metabolic rate (7, 18, 19).  The HSDA has 

been developed and refined based on three 

main equations developed by Givoni and 

Goldman (20, 21) that were created to predict 

Tc at rest, rise in Tc during exercise, and the 

decrease in Tc following exercise.  From these 

equations, a final equilibrium model was 

generated that predicts Tc trajectory or rate of 

rise based on inputs of the biophysical 

conditions (e.g., human, environment).  The 

model in its current embodiment is designed 

with several modular components to allow for 

incremental improvements to component 

subroutine equations (18, 19). 

The HSDA method relies on the heat 

balance equation (Eq. 1), where in order to 

predict heat rise or fall in humans, heat storage 

(S) is calculated from the sum of heat 

produced, heat gained, and via heat dissipation 

to the four pathways of heat exchange: 

 

𝑆 =  𝑀 ± 𝑊 ± 𝑅 ± 𝐶 ± 𝐾 − 𝐸 [W/m2] Eq.1 

 

where M and W represent metabolism and 

work rate; R is radiation transferred via 

electromagnetic waves (e.g., solar or infrared); 

C is convective heat transfer with fluid contact 

(e.g., air or water); K is conductive heat 

transfer from direct contact with solid objects 

(e.g., touching a cold surface); E is evaporative 

heat loss to the environment of water changing 

from liquid to vapor (e.g., sweat and 

respiratory evaporative water loss).  The 

HSDA requires ~16 inputs that are passed into 

a series of approximately 32 subroutine 

equations that collectively make predictions of 

Tc and sweating rates (Swt), which can then be 

used to produce maximal safe (uninterrupted 

one-time) work times, optimal work rest 

cycles for prolonged work, estimation of water 

requirements, and establish cooling 

requirements (Figure 1). 
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Figure 1. Heat exchange and the Heat Strain Decision Aid (HSDA) 

 

METHODS 

This study was conducted to assess the 

predictive accuracy of the HSDA model for 

mission planning and heat stress mitigation 

during self-paced load carriage exercise in the 

field.  US Army Ranger students from the 

Ranger Traning Brigade (RTB) (Fort Benning, 

GA) volunteered to be monitored during a load 

carriage event of their training.  Biophysical 

assessments were made for the clothing worn 

by the students.  Collectively, the data 

obtained from the students were compared to 

modeled predictions from HSDA. 

Volunteers 

Eighty-three US Army Ranger students 

during three classes were studied (Spring 

Class: n = 28; age, 24.4 ± 3.9 years, height 

175.3 ± 7.4 cm, body mass, 79.0 ± 8.4 kg; body 

fat 15.2 ± 3.2 %; 2-mile run time, 12:58 ± 0:50 

min:sec.  Summer Class: n = 25; age, 25.6 ± 

4.7 years; height, 177.8 ± 5.3 cm; body mass, 

79.3 ± 9.6 kg; body fat, 14.2 ± 3.6 %; 2-mile 

run time, 12:52 ± 0:52 min:sec. Winter Class: 

n = 30; age, 24.7 ± 4.2 years; height, 178.6 ± 

6.4 cm; body mass, 83.6 ± 9.0 kg; body fat, 

16.6 ± 4.0 %; 2-mile run time, 12:56 ± 0:58 

min:sec). The three classes were studied to 

examine the efficacy of the range of applying 

HSDA across different environmental 

conditions, as it has not   historically been used 

in cool or cold conditions  

Of these 83 enrolled, 65 participants 

had complete datasets and were used for the 

analyses (Spring, n = 15; Summer, n = 20; 

Winter, n = 30).   

Volunteers were briefed on the 

purposes, risks, and benefits of the study and 

gave their written informed consent prior to 

study participation.  Study approval was 

granted by the Scientific and Human Use 

Review Committees at the U.S. Army 

Research Institute of Environmental Medicine, 

Natick, MA.  

Baseline demographics data were 

collected from each volunteer, along with 

measures of body mass, height, and body fat 

estimates, made based on circumfrerence 

measures (AR 600-9 (22).  Each volunteer was 

fitted with a physiological status monitoring 

device (EQ-01 Equivital™, Swavesey, 
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Cambridge, UK, www.equivital.co.uk) to 

collect heart rate, respiration rate, body 

motion, body position, and skin temperature 

(Ts).  Additionally, each volunteer ingested a 

thermometer pill (MiniMitter, Inc., Bend, OR) 

approximately 18 hours prior to their measured 

activities, to obtain continuous measures of Tc.   

Environmental Conditions 

Air temperature (Ta, °C), percent of 

relative humidity (RH, %), solar radiation 

(Tmr, °C), and wind speed (Vw, m/s) were 

measured along the road-march course using a 

combination of three different data collection 

instruments; the Campbell Scientific, Inc. 

(Logan, UT) CR-10x weather station, the 

ADA Weather Pod (ADA Technologies Inc.; 

Littleton Colorado), and the HOBO® Pro v2 

Ta/RH logger (Onset Computer Corporation; 

Pocasset MA).   

Clothing Assessments 

Standard biophysical assessments for 

the thermal and evaporative resistances (Rt and 

Ret) were conducted (ASTM F1291-16 & 

ASTM F2370-16) (23, 24) for the worn 

ensembles. Assessments were conducted using 

a 20-zone sweating thermal manikin 

(‘Newton’, Thermetrics, Seattle, WA 

http://www.thermetrics.com/) located in a 

controlled environmental chamber. 

Values of (Rt and Ret) were converted 

to total insulation (clo), a permeability index 

(im). A ratio of clo and im (im/clo) is used as a 

measure of the ensembles evaporative 

potential (25, 26). Testing for Rt and Ret 

measurements were conducted at three wind 

velocities (V) to enable the calculation of 

exponent (gamma) value (g) to describe the 

change in insulation and evaporative potential 

with increasing wind speeds (27-29). 

Exercise Conditions 

Students from the Spring and Winter 

courses each marched 19.3 km (12 miles); 

while students in the Summer class marched 

for 12.9 km (8 miles).  The course grade was 

mostly flat (0%), with some uphill and 

downhill sections within ± 6% grade.  Each of 

the students carried military equipment on 

their body and in a rucksack.  The load was 

similar between students but sligthly different 

between classes (Spring: 34.1 ± 1.9, Summer: 

31.6 ± 1.2, and Winter: 30.8 ± 1.6 kg).  The 

students all walked/ran at their own self-pace; 

however, a mimum qualifying time was 

required in order to graduate from the course.   

Predictive Modeling 

Modeling with HSDA requires inputs 

related to the human, their activity (metabolic 

rate), environmental conditions and clothing 

biophysics.   

Inputs for each individual were based 

on direct measures of initial Tc, Ts, and 

calculated body surface area (BSA) from 

height and body mass measurements (30).  

Individuals were assumed to be fully hydrated 

(0% dehydrated) and heat acclimatized (more 

than 12 days in the heat). 

Metabolic rate was calculated for each 

individual based on their body size, average 

pace speed, load carried, and terrain features 

(3, 31-33).  As each individual traveled at a 

varied self-pace, for practical purposes the 

cacluations were done based on a single grade 

(G%) and terrain factor ( ) combination (G = 

0%;  =1.1). Part of the predictive modeling 

challenge is the fact that student pace varied 

for different reasons.  For example, some of 

the variations were easily explainable (e.g., 

uphill or downhill sections); while some were 

less predictable (e.g., individuals trying to 

pace one-another, onset of fatigue).  While this 

is a challenge from a scientific design 

perspective, this is also more realistic to real-

world activities. 

Inputs of the environment (Ta, RH, 

Vw) were used for each class based on the 

average during the march periods.  Inputs for 

each class were set as: Spring: 15.5 °C, 92.6 

http://www.equivital.co.uk/
http://www.thermetrics.com/
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%, 0.21 m/s,  Summer: 23.6 °C, 99.9 %, 0.48 

m/s,, and Winter: -11.1 °C, 83.7 %, 0.08 m/s). 

Additionally, calculations for were set to Tmr 

= Ta; while for each individual Vw = measured 

from the environment + individual movement 

speed. 

Clothing input properties were based 

on measured values for the Advanced Combat 

Uniform (ACU), where clo = 1.08, im/clo = 

0.47, clog= -0.24, and im/clog = 0.35. 

Statistical analysis 

Statistical analyses were performed 

using a combination of Microsoft Excel 

(Microsoft Corporation, Redmond, WA, 2016) 

and MATLAB (2019b, The MathWorks, Inc., 

Natick, MA). Descriptive statistics are 

presented as means ± SD.  Criterion for 

acceptable accuracies were based on bias, 

mean absolute error (MAE), root mean square 

error (RMSE), and calculated limits of 

agreement (LoA).  A direct measurement 

accuracy criterion of mean bias ± 0.27 °C was 

used, as well as MAE and RMSE within 

observed SD values (34-36).  Additionally, a 

non-parametric comparison method (similar to 

Bland-Altman (37)) was used for comparisons 

between observed and modeled data.  

Bias is used to indicate whether the 

model over- or under-predicted Tc, calculated 

as the mean difference between predictions 

and measurements.  The MAE, average of the 

absolute prediction errors, is calculated with 

as:  

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

=  
1

𝑛
∑ |𝑒𝑖|

𝑛

𝑖=1

 

 

where fi is the predicted value,  yi is the actual 

value, and ei is the absolute error.  

 

The use of RMSE is helpful, as it 

applies a greater penalty to larger errors, 

calculated as:  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑑𝑖

2

𝑛

𝑖=1

 

 

where di is the difference between observed 

and predicted Tc and n is the number of data 

points, in this case being the number of 

measurements for each minute.  This 

represents the mean absolute difference 

between predicted values and measured values 

(38).  One advantage of RMSE is that the value 

calculated is in the same units as the original 

data, i.e., degrees Celsius.  Overall RMSE was 

compared to a variation of 0.50 °C, criteria 

used by Gunga et al. (39).   

The area between the HSDA prediction 

line and the band (0.50 °C) lines shown in 

Figure 2 would be considered acceptable 

model performance.  If the model’s prediction 

fell above or below these band lines (the 

dashed lines) then the model would be 

determined to be inaccurate.   

Figure 2.  Example of 0.50 °C acceptable 

error bands surrounding Heat Strain Decision 

Aid (HSDA) prediction curve 

 

RESULTS 

 Calculated Bias, MAE, and RMSE 

between predicted and actual Tc showed a 

calculated Bias of -0.02 °C, MAE of 0.40 °C, 

and RMSE of 0.45 °C for the three classes 

combined (Table 1).  Each class and the 

aggregate met the Bias criterion of being 

within ± 0.27 °C.  Using the comparison to the 
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observed data SD, each of the classes and the 

aggregate MAE was within the observed SD.   

 The aggregate of the classes RSME 

was within the aggregate of the overall 

observed SD; while each individual class was 

within their respective observed SD with the 

exception of the Spring class being slightly 

over but less than 1.5·SD (0.41 to 0.49 °C).  

For the RMSE, if + 0.50 °C is used as the 

acceptable error, each class was within this 

criterion.   

 Figure 3 shows the actual and predicted 

Tc for all classes; while Figures 4-6 show the 

same comparisons for each class (Spring, 

Summer, Winter).  These figures show there 

are errors in predicted Tc, especially after the 

first hour of the road march.   

 

 

 

Table 1.  Error estimates (°C) of Bias, mean absolute error (MAE), root mean square deviation 

(RMSE), and Limits of Agreement (LoA) for predicted vs. observed core temperature by class 

Class Observed SD n Bias MAE RMSE LoA 

Spring ± 0.41 15 -0.22 0.40 0.49 ± 0.3 -1.09 to 0.65 

Summer ± 0.63 20 0.22 0.53 0.50 ± 0.3 -0.68 to 1.12 

Winter ± 0.36 30 0.05 0.26 0.35 ± 0.2 -0.62 to 0.73 

Overall ± 0.47 65 0.02 0.40 0.45 ± 0.3  

 

Figure 3.  Comparison of predicted (HSDA) to observed (Obs) core temperature during the road 

march for all classes averaged together (n = 65) 
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Figure 4.  Comparison of predicted (HSDA) to observed (Obs) core temperature during the road 

march for the Spring class (n = 15) 

 
 

Figure 5.  Comparison of predicted (HSDA) to observed (Obs) core temperature during the road 

march for the Summer class (n = 20) 
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Figure 6.  Comparison of predicted (HSDA) to observed (Obs) core temperature during the road 

march for the Winter class (n = 30) 

 
 

Non-parametric comparisons  

 Non-Parametric comparison method 

was used to show the deviations between the 

predicted and actual observed Tc.  The 

percentage of Tc values for all individuals 

outside the accepted error criteria of 0.50 °C 

was 24% of all predicted values.  Table 2 

shows the percent of the time HSDA under- 

and over-predicted Tc relative to the 

acceptable error criteria by class.  

Additionally, the amount of over- and under-

predicted values (error) based on the criterion 

measure of 0.50 °C is shown in Figures 7-9 for 

each class.  

 

 

 

 

 

 

Table 2.  Percent under-predicted and over-predicted core temperature by Heat Strain Decision 

Aid (HSDA) using error acceptance criterion of 0.50 ºC 

Class % Under Predictions < -0.50 °C  % Over Predictions > +0.50 °C 

Spring         29 3 

Summer        5 29 

Winter         5 10 

Overall 12 12 
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Figure 7.  Comparison of predicted vs. actual 

core temperature (error) with criterion measure of 

+ 0.50 °C for Spring class (n = 15) 

 
Note: Dashed lines represent the + 0.50 °C criterion 

 
 

Figure 9.  Comparison of predicted vs. actual 

core temperature (error) with criterion measure of 

+ 0.50 ° C for Summer class (n = 20) 

 
Note: Dashed lines represent the + 0.50 °C criterion 

 

 

 

 

 

 

 

 

Figure 8.  Comparison of predicted vs. actual 

core temperature (error) with criterion measure of 

+ 0.50 ° C for Winter class (n = 30) 

 
Note: Dashed lines represent the + 0.50 °C criterion 

 

DISCUSSION 

 The HSDA model was chosen because 

it is easy to use and has been relied on to help 

guide the recommendations made in TB-MED 

507 (5). Additionally, HSDA was being sought 

as a potential tool to use by the RTB, so it 

needed to be user-freiendly and designed for 

the operational users.  Results of the present 

study show that averaged inputs to HSDA 

predictions were within the pre-established 

statistical criterion.  While some of the 

individual assessments showed inaccuracies 

over time, the model outcomes still fell within 

acceptable criterion limits and the outcomes 

were similar to other assessments for both 

individual (40) and group mean data (41).  

Some variance was expected, as many 

variables that affect heat production and heat 

loss were dynamically changing (i.e., pace, 

terrain grade and ground type, weather, 

clothing wetness, and hydration), whereas the 

predictions used time averaged pace, grade 

and terrain.  In addition, variables that did not 

change over the mission did vary between 

individuals, or varied over time, such as 

percent body fat, fitness level and clothing 
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wetness. Both these dynamic and static 

variables will influence the magnitude and 

time dynamics of the Tc observed during 

exercise.   

 Individual Variability: The ability of 

HSDA to accurately model observed Tc 

responses varied by individual.  A published 

government technical report by Tharion et al., 

(10) includes figures of plots for each 

individual.  While it is also important to note 

the variable (self paced) speed of movement 

by the student over the course poses some 

challenges for the accuracy of the predictions.  

Tharion et al. (8) reported from this same data 

on the variability of these paces.  From that 

Table 2 of this work (8), the list of the average 

per mile pace by class is shown.  Students, in 

general, began the march at a brisk pace, 

slowed during the middle miles, and increased 

their pace near the end of the march.  To 

compound this challenge to the modeled 

accuracy, is that when students were nearing 

the end of the march many used different types 

of strategies (i.e., some sped up, some kept 

their pace, and some slowed down).  Unlike a 

civilian road race, where maximum 

performance is the goal of those running 

competitively, the goal of the march is to meet 

the qualifying standard. These students had 

other tasks to complete in that same training 

day and almost two more months of training to 

undergo after this qualification road march.  

While the event was self-paced it was not an 

event where maximum performance of all 

students was expected.   

It should be noted there were great 

individual differences in the successful 

predictions from the model.  While HSDA was 

not designed nor intended to predict individual 

responses to thermal stress, the large 

differences observed among individuals 

illustrates the problems HSDA will have in 

accurately predicting the thermal strain of a 

group of individuals that may have various 

individual differences in their physiology and 

behavioral histories.  Previous research has 

shown that individual differences can affect 

prediction accuracy of thermal strain (42, 43). 

The acceptability of HSDA group 

average predictions suggest that it could be 

used by the RTB to give a conservative rough 

estimate of the likely thermal strain the event 

will impose on the students.  Moreover, the 

results from this study confirm that historical 

use of HSDA and TB-MED 507 (2) are 

meeting their intent (i.e.,  protect most Soldiers 

from heat injuries and provide a conservative 

estimates of work duration, before a rest break 

is required).  In the scenario modeled, RTB 

students will have a low risk of experiencing a 

heat-related illness if they maintain an average 

pace, carry similar loads, and wear clothing 

that falls within the safe zone as predicted by 

HSDA for a given set of ambient conditions. 

 HSDA relies on several input variables 

and then uses a combination of equations to 

make the output predictions.  The more 

accurate these inputs are to the observed data, 

the more closely the predictions should be to 

what is observed.  However, in dynamic and 

real-world conditions, like these field based 

load carriage efforts, there are many elements 

that change in reality but are not easily 

captured within the model (e.g., non-steady-

state pace, weather conditions, or changes to 

clothing properties overtime).  These elements 

highlight both limitations and areas for 

potential improvement.  For example, in the 

current study we used an average metabolic 

rate for each individual based on the distance 

and their individual time to complete the 

activity.  While this is the more practical use 

model, it does create a higher predicted Tc 

initially and then a lower later Tc compared to 

the observed data (as students typically started 

at a higher pace and then slowed down).  An 

example of this can be seen in Figure 10. Using 

Volunteer 1 during the Spring class, we can see 

the original prediction based on the average 

metabolic rate (~700 W) for the course (Fig. 

10a).  However, if we started with a higher 

metabolic rate (1200 W) to meet the higher 
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initial pace for the first 30 minutes and then 

dropped it to a lower rate (400 W) for the 

remainder of the exercise (~160 minutes) we 

would see a much more accurate prediction 

comparison (Fig. 10 b).  The challenge in this 

approach, as mentioned above, is that these 

patterns of work rate are not easily known at 

the beginning of the timed road march.  

Similarly, changes to the environmental 

conditions or clothing properties (e.g., wetted) 

that occur over the course of time are not easily 

accounted for in the model; while if available 

could be used to make time point corrections 

similar to the example shown in Figure 10. 

Wetted clothing in this study was a particular 

issue due to the high humidly, preventing 

evaporation of sweat and many students would 

dump water over their heads during various 

points of the march further wetting their 

clothing. 

Despite the confounding factors and 

limitations, HSDA predictions met many of 

the accuracy criterions used to determine 

acceptability.  Table 3 presents a subjective 

evaluation (authors of this report) of model 

performance as evaluated by the various 

methods by class.  If predicted values were 

within 5% of the criteria values classified for 

either under- or over-predicted, the model was 

deemed acceptable; otherwise it was 

considered unacceptable.  The prevalence of 

acceptable markings suggest that the HSDA 

was reasonable for predicting the observed 

class average responses. 

 
Figure 10.  Example of differences in predictions based on average inputs (A) and mid-exercise 

adjustments (B) to metabolic rate  

 

Table 10.  Summary of Heat Strain Decision Aid (HSDA) performance assessed by the various methods 

and pre-established criteria by class 

Class Bias 
MAE 

 

RMSD 

 

Non-Parametric 

Comparison 

 ± 0.27 °C ± Obs SD ± 0.50 °C ± Obs SD ± 0.50 °C 
Under 

Predicted 

Over 

Predicted 

Spring         + + + - + - + 

Summer        + + - + + + - 

Winter         + + + + + - + 

Total + + + + + + - 

(+)  Equals acceptable performance and (–) equals unacceptable performance of the model 
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Future work 

 Trying to improve the HSDA model 

itself was beyond the scope of this research.  

However, it may be possible to improve the 

performance of HSDA by improving estimates 

for the metabolic cost of activities (M).  This 

work used legacy metabolic cost predictive 

equations (31); while recent work has been 

done to improve upon these methods (3, 4, 32) 

specific to military activities. Additionally, 

work is underway to incorporate all of these 

newer elements into one platform for modular 

updates and to further improve and evaluate 

the HSDA performance across a range of 

clothing configurations (19).   

 The use of non-direct measures are 

often ideal but can come with some significant 

limitations.  This is especially true with respect 

to metabolic rates, as they have the greatest 

influence on heat gain for an individual. This 

influence is mathematically reflected in 

HSDA.  For practical reasons, this study used 

the average movement speed for each 

individual as an input for predicting their 

individual metabolic rates.  While the accuracy 

of HSDA was shown to be within the 

established statistical criterion; there are still 

areas that could be improved upon. Recent 

work has shown these predictions to be 

accurate within similar self-paced field 

conditions (44); while additional research has 

shown that adjustments could be made to 

correct predictions of metabolic rates during 

dynamic activities by using GPS sensors (45). 

This type of adjustment could be used to 

correctly account for more dynamic self-paced 

and complex movement activities.   
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